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Abstract. The many-parameter Gaussian theory of a polymer chain is in the asymptotic 
region N + CQ (N is the number of monomer units) equivalent to a one-parameter scaled 
Gaussian theory. Such theories fulfil the necessary condition of minimum free energy only 
in a polymer chain without remote interactions along the chain. Therefore they cannot be 
used as a reliable basis in SCF calculations in polymers. 

1. Introduction 

In Flory’s theory of the excluded volume effect in polymers the mean-square length of a 
chain (R’) has the value of ( R 2 ) - N Z u  in the asymptotic region N+m. Flory 
determined the value of the ‘critical exponent’ v = 3/(2 + d )  for 1 C d S 4  and v = 4 for 
d > 4 (d is the space dimension). The most satisfactory and explicitly self-consistent 
derivation of this result was given by Gillis and Freed (1975). This derivation is based 
on an uncontrolled approximation which replaces the linear chain by a ring, and the 
polymer chain is considered as a long segment of this closed cycle. These authors 
further justify the use of this approximation by the reliability of the results of des 
Cloizeaux (1970). 

The starting point of des Cloizeaux’s work is the replacement of the distribution 
function of a polymer chain by the distribution function of the Gaussian closed ring. The 
Gaussian interaction potential, involving remote interactions along a chain, was chosen 
as a stiff chain potential minimising the free energy of the system. The asymptotic value 
of the ‘critical index’ v in this theory was determined as 3. 

Fixman’s theory (Fixman 1966) also uses the Gaussian interaction potential on a 
linear chain model. However, this model takes into account only the nearest neighbour 
interactions along a chain; excluded volume interactions are considered in this potential 
by means of just one adjustable parameter (Y which is analogous to the expansion factor 
of a chain. Fixman gives the value of the ‘critical exponent’ as v = 2. 

des Cloizeaux (1970) compares his theory with that of Fixman. He states that the 
starting point of his theory in determining the Gaussian trial potential is the principle of 
minimum free energy of a polymer, whereas Fixman describes the expansion of the 
chain by a more subtle consistency argument. 

2. Equivalence of the des Cioizeaux many-parameter approach with the Fixman 
one-parameter theory 

To justify the use of the boson operator method in the treatment of non-equilibrium 
polymer dynamics, Fixman (1966) applied the same method to the equilibrium 
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excluded volume problem. The zero approximation to the equilibrium distribution 
function of the linear polymer chain was chosen as follows: 

exp(-o zEl s:) 
jexp(-P Z E 1  SP) d r ’  *“ = d r  = dr2 . . . drN+, i 1) 

where P = l / k T  and SP = (3kT/2b2)/ri -r,+112 is the effective Gaussian ‘spring’ poten- 
tial between the i’th and ( i  + 1)’th links of a chain. The flexibility of the distribution (1) 
is wholly contained in the parameter b related to the chain ‘expansion factor’ a by 

b = boaU. ( 2 )  

The parameter a measures in a very crude way the expansion of a chain caused by the 
excluded volume effect, relative to the reference length bo. One end of the chain of 
equation (1) is fixed at the origin, i.e. rl = 0. Fixman’s boson operator method consists 
of the representation of all functions of coordinates by boson creation and annihilation 
operators. The distribution function (1) then gives the ground state 10) of the system. 

In the des Cloizeaux theory the Gaussian distribution function 

corresponds to Fixman’s distribution function (1). The Gaussian potential SG has the 
form 

All the flexibility of the distribution (4) is now, in contrast to distribution (l), contained 
in the set of N initial parameters G. These parameters form the set of N variational 
parameters of the des Cloizeaux theory (1970). 

Now, the conventional normal-coordinate transformation diagonalises the form (4). 
The orthogonal transformation (Fixman 1966) 

where 

defines the system of normal coordinates q and converts the quadratic form (4) to the 
following: 

where 

The function (b in equation (8) can be written explicitly (Gradsteyn and Ryzhik 1963) as 

2 Pin- 1 sin[l - ( p - l / N ) ] h  c o s ( l + ( 2 / N ) ) h  4p,I=4s in  ___ 1-- p - l +  
2 N i  N[  sin (h/ N 1 i9) 
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If p = 1 and G(l)  = a-’ are substituted into the quadratic form (7)  it is transformed, 
using 41.1 from equation (9) ,  into the relation 

6kT 2 hr Sa =T 1 1q1l2 sin - b i = i  2N 

which is identical with the potential S“ = Z E l  Sp used in equation ( l ) ,  transformed into 
normal coordinates. 

We now construct the basis of boson operators, not as in Fixman’s theory by the 
weight function defined by equation ( l ) ,  but by that from equation (3 ) .  In this way the 
distribution function t,bG is given to the basic state 10) of a system. It will now be shown 
that in the asymptotic region N -+ co this distribution function does not change any of 
the fundamental relations in Fixman’s theory. 

In agreement with Fixman (1966) we define the potential V as follows: 

( 1 1 )  1 N + l  

V = p [ S - S G + k T X  i < j  S(r i -r i )  

where S = a z S a ,  X is Fixman’s binary cluster integral and S(r)  is a three-dimensional 
Dirac S function. If we write equation ( 1  1 )  using three-dimensional Bose destructors 
and constructors in the basis of Hermite polynomial functions with the weight function 
( L G ,  we obtain 

N N  1 C Gk,l(bk+b:).(bi+bt).  
k = l  1=1 

The coefficients Gk,, in equation ( 1  2 )  are given by 

where 

and 
2 3 N  

2bo p = i  
Y I  =y 1 G(~I4p.i. 

The coefficients cbj and fi, also appearing in equation (12), are given by 

( f i ) i , j  = ( 0 i . j  - Q i , i ) / ~ i 2 ~ ’ ~  (17) 
with a factor y~ instead of the factor a1 = (6 l” /b)  sin(ln;/2N) in Fixman’s work (1966). 

We shall prove the following statement: The set of N initial variational parameters 
G(p) ,  defined by equation (7) ,  when put into the matrix GkSl defined by equation (13), 
reduces in the asymptotic region N + CO to a single parameter a. This statement is true 
for both diagonal and non-diagonal elements of the matrix Gk.1. 

To prove this statement it is sufficient to treat the asymptotic value of the function 4 
from equation (9)  for only one instance, that is p << N, 1 << N, N -+ a). Then 

(18) 2 2  2 
4 p . i - P  1 IT IN2.  
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The requirements leading to equation (18) follow from the definition of the sums of the 
infinite double and single series (see e.g. Fichtengolc (1969)). Using equation (9) we 
obtain for the asymptotic value of the parameter yl, as given by equation (15), the 
relation 

3 1 ' ~ '  
26zN p = i  

Y /  =- 2 c Em€?) (19) 

-2 If we put Z ; = ' = , p ' G ( p ) = a  in this relation, then in equation (12)  the diagonal and 
non-diagonal elements of matrix Gk.l in the expansion of the operator Q in terms of 
boson operators are reduced to the same form as Fixman's relations (1969). Equation 
(19) is then identical with the asymptotic value of the factor a1 for 1 << N ,  N -+ CO. 

Thus the many-parameter Gaussian theory considered by des Cloizeaux (1970) is 
reduced to the one-parameter scaled Gaussian theory, developed by Fixman (1966). 
Fixman's basic approximation, that non-diagonal elements of the matrix Gk,/ with k and 
1 differing by more than one vanish for N -+ 00, is also valid in des Cloizeaux's theory. 

3. The principle of minimum free energy 

We proved in 0 2 that for N -+ 00 the assumption of the many parameter distribution (3) 
is equivalent to the assumption (1) of Gaussian scaling theory. We shall further prove 
that such a theory cannot fulfil the necessary condition of minimum free energy. The 
free energy of a polymer chain can be written (des Cloizeaux 1970) as 

PF = ( V )  - In I exp(-@S") d r  (20) 

where the mean value is taken according to the one-parameter distribution (1 ). The 
necessary condition for minimum free energy, aF/da = 0, gives the relation 

- I exp(-pS") d r  SHV exp(-pS") I 
which reduces to 

(21)  

We assume in equation (22)  that a # 0. The case a = 0 is physically unreal. We shall 
now determine the a satisfying equation (22) .  To this end we consider the expression 

N 
(23)  

a 
-- ah k V exp[ - i = l  Air:i+l] d r  - 6' V exp[ - r= l  2 Air:i+l] dr. 

We obtain the left-hand side of equation (22)  from expression (23) ,  since 

A 1  = .  , . = A N  = A  = 3 / 2 b 2 .  (24) 
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To evaluate expression (23) we use the values of two well-known integrals 

After the necessary calculations equation (22) takes the form 
2 

(Y -1-a3zhk, k = 1, . . . , N, 

where 

and 

1 
i= l  j = k + l  ( j -  

(27) 

The form of equation (27) is identical to Fixman’s expression (73)’ (Fixman 1966). It is 
easy to see that for N + CO and finite k the equation (27) does not have a solution a # *l 
because formula (29) is asymptotically equal to zero in this case. Neither des 
Cloizeaw’s many-parameter Gaussian theory nor Fixman’s one-parameter scaling 
theory satisfy the necessary condition of minimum free energy of a polymer for N -* W. 

Furthermore, Fixman’s theory derives only from a linear approximation to the potential 
X Z i + S ( r i j )  in the normal S function expansion in the boson operator representation. 
It therefore violates the variational principle even more strongly. This can be easily 

shown in the following way. 
In the boson operator representation the free energy of a polymer has the following 

form: 

We express the operator Q according to equation (12) and for the vector Ip) we use the 
linear approximation of Fixman’s expression (92) (Fixman 1966): 

Here GI = G ~ J  is a diagonal element of the matrix G1.k as defined by equation (12). 
After some calculation we obtain 
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The condition aF/acy = 0 gives 

We now use Fixman’s expression for GI, as given by his equation (73) (1966) 

(331 

(34) 

where the gl are numbers independent of N for large N. Fixman assumed the vector of 
basic state 10) in equation (31) to be as close to Ip)  as may be achieved by the scaled 
Gaussian basic set. In the ideal case, unattainable by the one parameter distribution (1 ), 
GI would be zero for all the 1 = 1 , 2 ,  . . . , N. Then from equation (33) and (34) we obtain 

( 3 5 )  

With the above assumptions, equation (35) indicates that values of cy which are given by 
putting GI = 0 in equation (34), do not fulfil the minimum free-energy condition. 
Because the same value of cy is not a zero of equation (34) for all the Gr, Fixman chose 
the condition GI = 0 and thus made all the values G I ( ~ +  GI)-’ for I = 2, . . . , finite. 
Equation (34) leads to further values of a, violating the requirement of equation (33). 
In the trivial case, cy = 1 is the minimum free energy condition (27) identically fulfilled 
in the same way as the condition (33) for gl = 0. Thus one-parameter Gaussian theories 
of a polymer fulfil the free energy principle only for cy = 1 in the absence of remote 
interactions along the chain. 

2 
CY - 1 + (3z/2a3)gr = 0. 

4. Discussion 

Edwards’ SCF theory is criticised in the work of des Cloizeaux (1970). It is shown that 
Edwards’ spherically symmetric random SCF potential V(r)  completely destroys the 
symmetry which should exist between the ends of a polymer chain. To remedy this des 
Cloizeaux uses a trial Gaussian many-parameter potential and in this way the isotropy 
of space is restored. To simplify the calculation he uses the infinite polymer chain, the 
cyclic invariance of which allows simplification of the equations. This approximation 
was also the starting point in the work of Gillis and Freed (1975), where Flory’s value of 
the ‘critical exponent’ Y in the relation for the mean-square length of a polymer chain 
was verified. 

Our work has shown that in the asymptotic region N -+ CO des Cloizeaux’s many- 
parameter Gaussian distribution is identical with Fixman’s scaled Gaussian theory. In 
spite of des Cloizeaux’s statement that his theory starts from the principle of minimum 
chain free energy, it has been shown that for N + CO, one-parameter scaled Gaussian 
theories do not fulfil the variational principle. 

The real problem with the theory of des Cloizeaux and Fixman is that the methods 
use a variational trial potential which is much too simple. The failure of these theories 
does not necessarily imply that the ring polymer approximation is either a good or a bad 
one. It remains to be tested whether this ring polymer approximation is reasonable and 
this is indeed difficult. 

The weakest point of all present excluded-volume theories of polymers is the fact 
that up to now insurmountable mathematical difficulties force us to use approximations 
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whose effect on the final result is unknown. None of these theories can therefore 
confirm the validity of the ring polymer approximation. This is a further reason for the 
inadmissibility of Gaussian one-parameter theories. 
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Note added in proof. After this paper was submitted for publication, the work of Kosmas and Freed (1978) 
appeared. In this work a new SCF hierarchy was constructed and Flory’s value of the ‘critical’ exponent v for a 
linear polymer verified. SCF’S in this hierarchy are defined as a dominant contribution to an integral which 
gives the mean value for the even moments of the end-to-end distance of a polymer chain. This dominant 
contribution emerges as spherically symmetric, thus verifying Edwards’ SCF guess. However, SCF’S con- 
structed in such a way differ from those obtained as a dominant contribution to the closure approximation of 
integrodifferential hierarchies in polymers. The first of these systems gives Edwards’ SCF, the second Reiss’s 
SCF etc. The distinguishing feature of SCF’S so obtained is elliptic symmetry which has made the problem 
mathematically intractable until now. In the determination of SCF’S using the mean value of even moments of 
the end-to-vector, as used by work of Kosmas and Freed (1978), less information is involved than in the 
definition, stemming from dominant contributions to the closure approximations of the Green functions of 
the integrodifferential systems mentioned above. The work of Kosmas and Freed (1978) cannot therefore 
hold as a justification of the use of the ring polymer model. 
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